pp Physics in the Antiproton SourceBeam Issues --

1. Past performance

- a. Preparations & Required BD support
- **b.** Antiproton Source Performance

2. Prospects for the future

- a. Preparations & Required BD support
- b. Expected performance

Overview of 2000 Fixed Target Run

The Run:

Deceleration Ramp Development: Aug. 27 – Nov. 16, 1999

 \sim 3 people \times 2½ Months = 7.5 man-months (above transition ramps only)

Engineering Run Jan. 19 – Feb. 7, 2000

Running Period: April 4 – Nov. 9, 2000

Statistics:

Total Integrated Luminosity: 113 pb⁻¹

E835 2000 Integrated Luminosity Slide

Max. Instantaneous Luminosity: 4.0×10³¹ cm⁻² sec⁻¹

Target Density = 4×10^{14} atoms/cm³ \angle , Target Density – Slide 1

 \overline{p} Stack = 2×10^{11} $\underline{\mathcal{L}}$, Target Density – Slide 2 E835 Gas Jet Target Photo

Beam Loss Rate @ Max Luminosity: ~1.5×10¹⁰ p/hr

 \overline{p} Stacking Rate: $2 - 3 \times 10^{10} \overline{p}/hr$

Center of Mass Energy Range: 3340 – 4270 MeV

⇒ Entire range above Accumulator transition energy

2000 Deceleration γ_t Ramp

Significant Aspects of Antiproton Source Performance

Deceleration:

- Managed by PAUX -- a special Pbar front-end process Pbar front-end recently replaced \Rightarrow No More PAUX
- \triangleright Typically, 5 25 % of beam lost before target ON
- \triangleright Time required: 0.5 5.0 hours
- **>** Biggest stack decelerated: $\sim 80 \times 10^{10}$ **p**
- ightharpoonup Biggest stack decelerated through transition: 25×10¹⁰ \bar{p}

<u>Deceleration to the χ_0 </u> <u>One week of E835 Operations</u>

Beam energy control:

- > Implemented Beam energy feedback control using movable momentum cooling pickups
- \triangleright Beam energy stable to \pm 50 keV in center of mass frame

Energy Control

Significant Aspects of Antiproton Source Performance (Continued)

Beam energy measurement:

- Accomplished by measuring beam velocity (derived from separate measurements of orbit length and beam revolution frequency)
- Calibrated by scans of narrow resonances (e.g. ψ)
- Error is:

$$\frac{\delta E_{cm}}{E_{cm}} = \gamma \left(\frac{pc}{E_{cm}}\right)^2 \left(\frac{\delta f_{rev}}{f_{rev}} - \frac{\delta L}{L}\right)$$

• $\delta L \cong 1.5 \text{ mm}$ (out of 474.05 m), $\delta f_{rev} \cong 0.1 \text{ Hz}$ (out of 0.625 kHz) $\delta E_{cm} = 224 \text{ keV}$ at the ψ' (3686 MeV/c²) $\delta E_{cm} = 75 \text{ keV}$ at the J/ ψ (3097 MeV/c²)

Beam energy distribution measurement:

Beam energy distribution obtained from longitudinal schottky pickups.

Beam Energy Spectrum

Can we do it again?

What will have changed:

- 1) Stacktail cooling upgrade this is the biggest issue
 - > Stacking rate *before* upgrade: $20 \times 10^{10} \overline{p}/hr$
 - \triangleright Max. Stack size *before* upgrade: 200 ×10¹⁰
 - > Stacking rate after upgrade: $100 \times 10^{10} \overline{p}/hr$?!
 - Max. Stack size after upgrade: 20×10^{10}
- 2) Recycler To be or not to be that is the question.
 - ➤ Without the recycler the stacktail upgrade will not be installed
 - ⇒ Big stacks
 - ⇒ Slow stacking
 - \Rightarrow No place to "stash" a reserve supply of \overline{p} 's in case collider store is lost

3) Controls

New pbar front end ⇒ Deceleration will require a new PAUX to be written – long lead time

Need new console software to manage deceleration and beam control during a store.

Can we do it again? (continued)

4) Deceleration Ramps

- Ramps to $E_{cm} = 3300$ MeV in hand. *However*, experience has shown that it's best to start from scratch every run.
- ho May be able get to J/ψ (E_{cm} = 3097 MeV) without crossing transition
- > For low energies, transition will have to be crossed
 - Limited beam can be transmitted through transition $< 25 \times 10^{10} \overline{p}$
 - Transition crossing ramps and below transition deceleration ramps will have to be constructed
 - ⇒ This at least doubles the ramp development time

Data Taking at Constant Luminosity of $2 \cdot 10^{3.1} \text{ cm}^{-2} \text{ s}^{-1}$ throughout a day

Gabriele Garzoglio (Jan '97)

1999 - 2000 Deceleration Ramps

